翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Weyl symmetry : ウィキペディア英語版
Weyl transformation
:''See also Wigner–Weyl transform, for another definition of the Weyl transform.''
In theoretical physics, the Weyl transformation, named after Hermann Weyl, is a local rescaling of the metric tensor:
:g_\rightarrow e^g_
which produces another metric in the same conformal class. A theory or an expression invariant under this transformation is called conformally invariant, or is said to possess Weyl symmetry. The Weyl symmetry is an important symmetry in conformal field theory. It is, for example, a symmetry of the Polyakov action.
The ordinary Levi-Civita connection and associated spin connections are not invariant under Weyl transformations. An appropriately invariant notion is the Weyl connection, which is one way of specifying the structure of a conformal connection.
A quantity φ has conformal weight ''k'' if, under the Weyl transformation, it transforms via
:
\varphi \to \varphi e^.

Thus conformally weighted quantities belong to certain density bundles; see also conformal dimension. Let ''A''μ be the connection one-form associated to the Levi-Civita connection of ''g''. Introduce a connection that depends also on an initial one-form \partial_\mu\omega via
:
B_\mu = A_\mu + \partial_\mu \omega.

Then D_\mu \varphi \equiv \partial_\mu \varphi + k B_\mu \varphi is covariant and has conformal weight k - 1.
==Literature==

* Hermann Weyl, ''Raum, Zeit, Materie'' (Space, Time, Matter), Lectures on General Relativity, in German. Berlin, Springer 1921, with later reprints in 1993. ISBN 3-540-56978-2


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Weyl transformation」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.